The most up-to-date listing of our papers can be found on Jonathan’s Google Scholar page.

Preprints

In various stages of revision:

  1. Jin Y, Terhorst J. The solution surface of the Li-Stephens haplotype copying model. Algorithms for Molecular Biology. 2023;18: 12. doi:10.1186/s13015-023-00237-z [link] [bibtex]
  2. Dilber E, Terhorst J. Accelerated inference of complex demographic models from large allele frequency spectra. 2023;: in preparation. [bibtex]
  3. Erdmann-Pham DD, Terhorst J, Song YS. Exact and arbitrarily accurate non-parametric two-sample tests based on rank spacings. 2020. doi:10.48550/ARXIV.2008.06664 [link] [bibtex]

Published

  1. Ki C, Terhorst J. Exact Decoding of a Sequentially Markov Coalescent Model in Genetics. Journal of the American Statistical Association. 2022;: in press. doi:10.1080/01621459.2023.2252570 [link] [bibtex]
  2. Legried B, Terhorst J. Rates of convergence in the two-island and isolation-with-migration models. Theoretical Population Biology. 2022;147: 16–27. doi:10.1016/j.tpb.2022.08.001 [link] [bibtex]
  3. Fan S, Spence JP, Feng Y, Hansen MEB, Terhorst J, Beltrame MH, et al. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell. 2023;186: 923–939.e14. doi:10.1016/j.cell.2023.01.042 [link] [bibtex]
  4. Mathieson I, Terhorst J. Direct detection of natural selection in Bronze Age Britain. Genome Research. 2022;32: 2057–2067. doi:10.1101/gr.276862.122 [link] [bibtex]
  5. Ki C, Terhorst J. Variational phylodynamic inference using pandemic-scale data. Molecular Biology and Evolution. 2022;39. doi:10.1093/molbev/msac154 [link] [bibtex]
  6. Maity S, Dutta D, Terhorst J, Sun Y, Banerjee M. A linear adjustment based approach to posterior drift in transfer learning. Biometrika. 2023. doi:10.1093/biomet/asad029 [link] [bibtex]
  7. Dilber E, Terhorst J. Robust detection of natural selection using a probabilistic model of tree imbalance. Genetics. 2022;220. doi:10.1093/genetics/iyac009 [link] [bibtex]
  8. Legried B, Terhorst J. Identifiability and inference of phylogenetic birth–death models. Journal of Theoretical Biology. 2023;568: 111520. doi:10.1016/j.jtbi.2023.111520 [link] [bibtex]
  9. Legried B, Terhorst J. A class of identifiable phylogenetic birth–death models. Proceedings of the National Academy of Sciences. 2022;119: e2119513119. doi:10.1073/pnas.2119513119 [link] [bibtex]
  10. Kamm J, Terhorst J, Durbin R, Song YS. Efficiently Inferring the Demographic History of Many Populations With Allele Count Data. Journal of the American Statistical Association. 2020;115: 1472–1487. doi:10.1080/01621459.2019.1635482 [link] [bibtex]
  11. Plumb G, Terhorst J, Sankararaman S, Talwalkar A. Explaining Groups of Points in Low-Dimensional Representations. In: III HD, Singh A, editors. Proceedings of the 37th International Conference on Machine Learning. PMLR; 2020. pp. 7762–7771. Retrieved: https://proceedings.mlr.press/v119/plumb20a.html [link] [bibtex]
  12. Gao Z, Terhorst J, Van Hout CV, Stoev S. U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies. Bioinformatics. 2019;36: 974–975. doi:10.1093/bioinformatics/btz637 [link] [bibtex]
  13. Spence JP, Steinrücken M, Terhorst J, Song YS. Inference of population history using coalescent HMMs: review and outlook. Current Opinion in Genetics & Development. 2018;53: 70–76. doi:10.1016/j.gde.2018.07.002 [link] [bibtex]
  14. Palamara P, Terhorst J, Song YS, Price AL. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. Nature Genetics. 2018;50: 1311. doi:10.1038/s41588-018-0177-x [link] [bibtex]
  15. Moreno-Mayar JV, Potter BA, Vinner L, Steinrücken M, Rasmussen S, Terhorst J, et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature. 2018. doi:10.1038/nature25173 [link] [bibtex]
  16. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics. 2017;49: 303–309. doi:10.1038/ng.3748 [link] [bibtex]
  17. Kamm JA, Terhorst J, Song YS. Efficient Computation of the Joint Sample Frequency Spectra for Multiple Populations. Journal of Computational and Graphical Statistics. 2017;26: 182–194. doi:10.1080/10618600.2016.1159212 [link] [bibtex]
  18. Liu T-Y, Dodson AE, Terhorst J, Song YS, Rine J. Riches of phenotype computationally extracted from microbial colonies. Proceedings of the National Academy of Sciences. 2016;113: E2822–E2831. doi:10.1073/pnas.1523295113 [link] [bibtex]
  19. Terhorst J, Schlötterer C, Song YS. Multi-locus Analysis of Genomic Time Series Data from Experimental Evolution. PLoS Genetics. 2015;11: 1–29. doi:10.1371/journal.pgen.1005069 [link] [bibtex]
  20. Terhorst J, Song YS. Fundamental limits on the accuracy of demographic inference based on the sample frequency spectrum. Proceedings of the National Academy of Sciences. 2015;112: 7677–7682. doi:10.1073/pnas.1503717112 [link] [bibtex]
  21. Talwalkar A, Liptrap J, Newcomb J, Hartl C, Terhorst J, Curtis K, et al. SMaSH: a benchmarking toolkit for human genome variant calling. Bioinformatics. 2014;30: 2787–2795. doi:10.1093/bioinformatics/btu345 [link] [bibtex]
  22. Jaggi M, Smith V, Takac M, Terhorst J, Krishnan S, Hofmann T, et al. Communication-Efficient Distributed Dual Coordinate Ascent. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in Neural Information Processing Systems 27. 2014. pp. 3068–3076. [bibtex]
  23. Bloniarz A, Talwalkar A, Terhorst J, Jordan MI, Patterson D, Yu B, et al. Changepoint Analysis for Efficient Variant Calling. In: Sharan R, editor. RECOMB 2014. Cham; 2014. pp. 20–34. doi:10.1007/978-3-319-05269-4_3 [link] [bibtex]
  24. Xia R, Sheehan S, Zhang Y, Talwalkar A, Zaharia M, Terhorst J, et al. Distributed Pipeline for Genomic Variant Calling. NIPS Workshop on BIG Learning. 2012. [bibtex]

Unpublished

  1. Terhorst J. The Kalmanson Complex. Master's thesis, San Francisco State University. 2011. Retrieved: https://arxiv.org/abs/1102.3177 [link] [bibtex]

Pre-history

  1. Sunding D, Terhorst J. Conserving endangered species through regulation of urban development: the case of California vernal pools. Land Economics. 2014;90: 290–305. doi:10.3368/le.90.2.290 [link] [bibtex]
  2. Terhorst J, Berkman M. Effect of coal-fired power generation on visibility in a nearby national park. Atmospheric Environment. 2010;44: 2524–2531. doi:10.1016/j.atmosenv.2010.04.022 [link] [bibtex]
  3. Sunding D, Swoboda A, Terhorst J. Federal Land Use Controls and the Planning Anticommons. UC Berkeley, Department of Agricultural and Resource Economics; 2007. Retrieved: https://are.berkeley.edu/ sunding/FederalLandUse.pdf [link] [bibtex]